
IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

52 www.ijdcst.com

A Study on Differential Query Services in Cost–Efficient

Clouds

 L.Jyothsna1, M. Samba Siva Rao2

1M.Tech (CSE), Usharama College of Engineering and Technology, A.P., India.

2Assistant Professor, Dept. of Computer Science & Engineering, Usharama College of Engineering and Technology, A.P.,

India.

Abstract — In the simplest terms, cloud computing

means storing and accessing data and programs over

the Internet instead of your computer's hard drive.

The cloud is just a metaphor for the Internet. Now a

days Cloud computing as an emerging technology

trend is expected to reshape the advances in

information technology. In a cost-efficient cloud

environment, a user can tolerate a certain degree of

delay while retrieving information from the cloud to

reduce costs. In this paper, i am address two

fundamental issues in such an environment: privacy

and efficiency. My first review a private keyword-

based file retrieval scheme that was originally

proposed by Ostrovsky. Their scheme allows a user to

retrieve files of interest from an untrusted server

without leaking any information. The main drawback

is that it will cause a heavy querying overhead

incurred on the cloud and thus goes against the

original intention of cost efficiency. In this paper,

present three efficient information retrieval for ranked

query (EIRQ) schemes to reduce querying overhead

incurred on the cloud. In EIRQ, queries are classified

into multiple ranks, where a higher ranked query can

retrieve a higher percentage of matched files. A user

can retrieve files on demand by choosing queries of

different ranks. This feature is useful when there are a

large number of matched files, but the user only needs

a small subset of them. Under different parameter

settings, extensive evaluations have been conducted

on both analytical models and on a real cloud

environment, in order to examine the effectiveness of

our schemes.

Keywords — Cloud computing, cost efficiency,

differential query services, privacy

I Introduction

The goal of cloud computing is to apply

traditional super-computing, or high-performance

computing power, normally used by military and

research facilities, to perform tens of trillions of

computations per second, in consumer-oriented

applications such as financial portfolios, to deliver

personalized information, to provide data storage or

to power large, immersive computer games.Cloud

computing as an emerging technology is expected to

reshape information technology processes in the near

future [1]. Due to the overwhelming merits of cloud

computing, e.g., cost-effectiveness, flexibility and

scalability, more and more organizations choose to

outsource their data for sharing in the cloud. As a

typical cloud application, an organization subscribes

the cloud services and authorizes its staff to share files

in the cloud. Each file is described by a set of

keywords, and the staff, as authorized users, can

retrieve files of their interests by querying the cloud

with certain keywords. In such an environment, how

to protect user privacy from the cloud, which is a third

party outside the security boundary of the

organization, becomes a key problem.

User privacy can be classified into search privacy and

access privacy [2]. Search privacy means that the

cloud knows nothing about what the user is searching

for, and access privacy means that the cloud knows

http://www.webopedia.com/TERM/S/supercomputer.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

53 www.ijdcst.com

nothing about which files are returned to the user.

When the files are stored in the clear forms, a naive

solution to protect user privacy is for the user to

request all of the files from the cloud; this way, the

cloud cannot know which files the user is really

interested in. While this does provide the necessary

privacy, the communication cost is high.

Private searching was proposed by Ostrovsky et al.

[3], [4] (referred to as the Ostrovsky scheme in this

paper), which allows a user to retrieve files of interest

from an untrusted server without leaking any

information. However, the Ostrovsky scheme has a

high computational cost, since it requires the cloud to

process the query (perform homomorphic encryption)

on every file in a collection. Otherwise, the cloud will

learn that certain files, without processing, are of no

interest to the user. It will quickly become a

performance bottleneck when the cloud needs to

process thousands of queries over a collection of

hundreds of thousands of files argue that subsequently

proposed improvements, like [5], [6], also have the

same drawback. Commercial clouds follow a pay-as-

you-go model, where the customer is billed for

different operations such as bandwidth, CPU time, and

so on. Solutions that incur excessive computation and

communication costs are unacceptable to customers.

To make private searching applicable in a cloud

environment, our previous work [7] designed a

cooperate private searching protocol (COPS), where a

proxy server, called the aggregation and distribution

layer (ADL), is introduced between the users and the

cloud. The ADL deployed inside an organization has

two main functionalities: aggregating user queries and

distributing search results. Under the ADL, the

computation cost incurred on the cloud can be largely

reduced, since the cloud only needs to execute a

combined query once, no matter how many users are

executing queries. Furthermore, the communication

cost incurred on the cloud will also be reduced, since

files shared by the users need to be returned only once.

Most importantly, by using a series of secure

functions, COPS can protect user privacy from the

ADL, the cloud, and other users.

In this paper, I am introducing a novel concept,

differential query services, to COPS, where the users

are allowed to personally decide how many matched

files will be returned. This is motivated by the fact that

under certain cases, there are a lot of files matching a

user’s query, but the user is interested in only a certain

percentage of matched files. To illustrate, let us

assume that Alice wants to retrieve 2 percent of the

files that contain keywords ‘‘A, B’’, and Bob wants to

retrieve 20 percent of the files that contain keywords

‘‘A, C’’. The cloud holds 1,000 files, where {F1; . . . ;

F500} and {F501; . . . ; F1000} are described by

keywords ‘‘A, B’’ and ‘‘A, C’’, respectively. In the

Ostrovsky scheme, the cloud will have to return 2,000

files. In the COPS scheme, the cloud will have to

return 1,000 files. In our scheme, the cloud only needs

to return 200 files. Therefore, by allowing the users to

retrieve matched files on demand, the bandwidth

consumed in the cloud can be largely reduced.

Motivated by this goal, propose a scheme, termed

Efficient Information retrieval for Ranked Query

(EIRQ), in which each user can choose the rank of his

query to determine the percentage of matched files to

be returned. The basic idea of EIRQ is to construct a

privacy-preserving mask matrix that allows the cloud

to filter out a certain percentage of matched files

before returning to the ADL. This is not a trivial work,

since the cloud needs to correctly filter out files

according to the rank of queries without knowing

anything about user privacy. Focusing on different

design goals, provide two extensions: the first

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

54 www.ijdcst.com

extension emphasizes simplicity by requiring the least

amount of modifications from the Ostrovsky scheme,

and the second extension emphasizes privacy by

leaking the least amount of information to the cloud.

Our key contributions are as follows:

1. Propose three EIRQ schemes based on the

ADL to provide a cost-efficient solution for

private searching in cloud computing.

2. The EIRQ schemes can protect user privacy

while providing a differential query service

that allows each user to retrieve matched files

on demand.

3. Provide two solutions to adjust related

parameters; one is based on the Ostrovsky

scheme, and the other is based on Bloom

filters.

4. Extensive experiments were performed using

a combination of simulations and real cloud

deployments to validate our schemes.

II Related Work

Our work aims to provide differential query services

while protecting user privacy from the cloud. Existing

research that is similar to ours can be found in the

areas of private searching [8], [9], [10], [11]. Unlike

searchable encryption [12], where the user conducts

searches on encrypted data, private searching performs

keyword-based searches on unencrypted data. Private

searching was first proposed in [3], [4], which allow a

server to filter streaming data without compromising

user privacy. Their solution requires the server to

return a buffer of size O(flog(f)) when f files match a

user’s query. Each file is associated with a survival

rate, which denotes the probability of this file being

successfully recovered by the user. Based on the

Paillier cryptosystem [13], the files that mismatch a

query will not survive in the buffer, but the matched

files enjoy a high survival rate.

Among various extensions, [5], [6] further reduced the

communication cost from O(f log(f) to O(f) by solving

a set of linear equations to recover f matched files.

However, their scheme requires the decryption of one

more buffer, thus the computation cost is higher than

the Ostrovsky scheme. Reference [8] presented an

efficient decoding mechanism which allows the

recovery of files that collide in a buffer position.

Reference [9] proposed a recursive extraction

mechanism, which requires a buffer of size O(f) when

f files match a user’s query. Reference [10] proposed

two new communication-optimal constructions; one

uses Reed-Solomon codes and allows for a zero-error,

and the other is based on irregular LDPC codes and

allows for lower computation cost at the server. The

above private searching schemes only support

searching for OR of keywords or AND of two sets of

keywords. Reference [11] extended the types of

queries to support disjunctive normal forms (DNF) of

keywords. The main drawback of existing private

searching schemes is that both the computation and

communication costs grow linearly with the number of

users executing queries. Thus, when applying these

schemes to a large-scale cloud environment, querying

costs will be extensive.

III System Model

The system mainly consists of three entities:1 the

aggregation and distribution layer (ADL), many users,

and the cloud, as shown in Fig. 1. For ease of

explanation, only use a single ADL in this paper, but

multiple ADLs can be deployed as necessary. An

ADL is deployed in an organization that authorizes its

staff to share data in the cloud. The staff members, as

the authorized users, send their queries to the ADL,

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

55 www.ijdcst.com

which will aggregate user queries and send a

combined query to the cloud. Then, the cloud

processes the combined query on the file collection

and returns a buffer that contains all of matched files

to the ADL, which will distribute the search results to

each user. To aggregate sufficient queries, the

organization may require the ADL to wait for a period

of time before running our schemes, which may incur

a certain querying delay. To further reduce the

communication cost, a differential query service is

provided by allowing each user to retrieve matched

files on demand. Specifically, a user selects a

Particular rank for his query to determine the

percentage of matched files to be returned. This

feature is useful when there are a lot of files that

match a user’s query, but the user only needs a small

subset of them.

Fig. 1: System model.

Overview of the Ostrovsky Scheme

The Paillier cryptosystem allows the performance of

certain operations, such as multiplication and

exponentiation, on ciphertext directly. Given the

resultant ciphertext, the user can obtain the

corresponding plaintext that processes addition and

multiplication operations.

The Ostrovsky scheme consists of three algorithms,

the working process of which is shown in Fig. 2(a).

Two assumptions are used in their scheme: first, a

dictionary that consists of the universal keywords is

assumed to be publicly available; second, the users are

assumed to have the ability to estimate the number of

files that match their queries. To better illustrate its

working process, provide an example in the

supplementary file available online

Step 1. The user runs the Generate Query algorithm to

send an encrypted query to the cloud. The query is a

bit string encrypted under the user’s public key, where

each bit is an encryption of 1, if the keyword in the

dictionary is chosen; otherwise, it is an encryption of

0.

Step 2. The cloud runs the Private Search algorithm to

return an encrypted buffer to the user. Generally

speaking, the cloud processes the encrypted query on

every file in the collection to generate an encrypted c-

e pair, and maps it to multiple entries of an encrypted

buffer. For file Fj, the corresponding c-e pair, denoted

as (cj ,ej) is generated as follows: the bits in query Q

corresponding to keywords in Fj are multiplied. The

mapping operation will be performed gamma times.

After mapping all pairs to the buffer, each buffer entry

has one of the three statuses: survival, collision, and

mismatch. If only one matched file is mapped, the

entry state is survival; if more than one matched file is

mapped, the entry state is collision; if no matched files

aremapped, the entry state is mismatch.

Step 3. The user runs the File Recover algorithm to

recover files. The user decrypts the buffer, entry by

entry, to obtain the plaintext c-e pairs. For the entries

in the survival state, file content can be recovered by

dividing the plaintext e value by the plaintext c value.

The security of the Ostrovsky scheme derives from the

semantic security of the Paillier cryptosystem. The

key technique of their scheme is that the files

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

56 www.ijdcst.com

mismatching a user’s query are processed to encrypted

0s, which have no impact on the matched files, even if

they are mapped in the same entry. Thus, the buffer

size only depends on the number of matched files,

which is much smaller than the number of files stored

in the cloud.

Fig. 2: Working process. (a) Ostrovsky scheme. (b)

EIRQ- Efficient scheme.

The basic idea of EIQR-Efficient is to construct a

privacy-preserving mask matrix with which the cloud

can filter out a certain percentage of matched files

before mapping them to a buffer. As proven in the

Ostrovsky scheme, the file survival rate is determined

by the buffer size β and mapping times γ. therefore,

the basic idea of two extensions is that, for each rank i

€ { 0,. . . , r}, the ADL adjusts the buffer size _i and

the mapping times _i to make the file survival rate q i

approach 1 – i/r.

EIRQ-Efficient Scheme

Firstly, should determine the relationship between

query rank and the percentage of matched files to be

returned. Suppose that queries are classified into 0 ~ r

ranks. Rank-0 queries have the highest rank and Rank-

r queries have the lowest rank. In this paper, simply

determine this relationship by allowing Rank-i queries

to retrieve 1 – i/r percent of matched files. Therefore,

Rank-0 queries can retrieve 100 percent of matched

files, and Rank-r queries cannot retrieve any files.

Secondly, should determine which matched files will

be returned and which will not. In this paper, I am

simply determine the probability of a file being

returned by the highest rank of queries matching this

file. Specifically, first rank each keyword by the

highest rank of queries choosing it, and then rank

each file by the highest rank of its keywords. If

the file rank is i, then the probability of being

filtered out is i=r. Therefore, Rank-0 files will be

mapped into a buffer with probability 1, and

Rank-r files will not be mapped at all. Since

unneeded files have been filtered out before

mapping, the mapped files should survive in the

buffer with probability 1.

Since algorithms QueryGen and ResultDivide are

easily understood, I am only provided the details of

algorithms Matrix- Construct and File Filter in Alg. 1.

Step 1. The user runs the QueryGen algorithm to send

keywords and the rank of the query to the ADL. Since

the ADL is assumed to be a trusted third party, this

query will be sent without encryption.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

57 www.ijdcst.com

Step 2. After aggregating enough user queries, the

ADL runs the Matrix Construct algorithm to send a

mask matrix to the cloud. The mask matrix M is a d-

row and r-column matrix, where d is the number of

keywords in the dictionary, and r is the lowest query

rank. Let M[I, j] denote the element in the i-th row and

the j-th column, and let l be the highest rank of queries

that choose the i th keyword Dic[i] in the dictionary.

M is constructed as follows: for the i-th row of M that

corresponds to Dic[i], M[i,1] . . .;M[i, r-l] are set to 1,

and M[I, r-l+1] . . .M[i, r] are set to 0, then each

element is encrypted under the ADL’s public key pk.

For the rows that correspond to Rank-l keywords, the

ADL sets the first r – l elements, rather than random r

_ l elements, to 1. The reason is to ensure that, given

any Rank-l file Fj, when my choose a random number

k, the probability of all of the k-th elements of the

rows that correspond Fj’s keywords being 0 is l=r,

which is determined by the highest rank of Fj’s

keywords.

Step 3. The cloud runs the File Filter algorithm to

return a buffer that contains a certain percentage of

matched files to the ADL. Specifically, the cloud

multiplies the k-th elements of the rows that

correspond to Fj’s keywords together to form cj,

where k ¼ j mod r. Then, it powers jFjj to cj to obtain

ej, and maps the c-e pair into multiple entries of a

buffer, as in the Ostrovsky scheme. Note that, with

Step 2, i can make sure that, for a Rank-l file Fj, the

probability of cj being 0 is l=r, and thus the

probability of Fj being filtered out is l=r.

Step 4. The ADL runs the ResultDivide algorithm to

distribute search results to each user. File contents are

recovered as the File Recover algorithm in the

Ostrovsky scheme. To allow the ADL to distribute

files correctly, i require the cloud to attach keywords

to the file content. Thus, the ADL can find out all of

the files that match users’ queries by executing

keyword searches.

Access Privacy

In the three schemes, the cloud processes the

encrypted query on each file in a collection, and maps

the processing result into a buffer, which is encrypted

with the ADL’s public key. The cloud conducts this

process for all files in the same way. Therefore, the

cloud cannot know which files are actually returned

from the encrypted buffer.

Rank Privacy

In EIRQ-Simple, the messages from the ADL to the

cloud are r encrypted queries, the buffer size, and the

mapping times, where r is the information, which leak

more than [3]. Given r, the cloud only knows the

number of queryranks without knowing how many

users is in each rank, nor which users are in which

ranks. Therefore, EIRQSimple can protect the basic

level of rank privacy for a user. In EIRQ-Privacy, the

message from the ADL to the cloud is a d-row and m-

column mask matrix, where d is the number of

keywords in the dictionary, and m =max γi is the

maximal value of mapping times. Therefore, EIRQ-

Efficient can protect the basic level of rank privacy for

a user. I will evaluate the consumed energy overhead

in the cloud to verify the effectiveness of our schemes.

I use No Rank to denote unranked queries under the

ADL. The summary of the experiment parameters are

shown in below Table.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

58 www.ijdcst.com

.

Table 1: TOWARDS DIFFERENTIAL QUERY

SERVICES IN COST-EFFICIENT CLOUDS

IV Conclusion

In this paper, proposed three EIRQ schemes based on

an ADL to provide differential query services while

protecting user privacy. By using our schemes, a user

can retrieve different percentages of matched files by

specifying queries of different ranks. By further

reducing the communication cost incurred on the

cloud, the EIRQ schemes make the private searching

technique more applicable to a cost-efficient cloud

environment. However, in the EIRQ schemes, simply

determine the rank of each file by the highest rank of

queries it matches. For our future work, will try to

design a flexible ranking mechanism for the EIRQ

schemes.

References

[1] P. Mell and T. Grance, ‘‘The NIST Definition of

Cloud Computing (Draft),’’ in NIST Special

Publication. Gaithersburg, MD, USA: National

Institute of Standards and Technology, 2011.

[2] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, ‘‘Searchable Symmetric Encryption:

Improved Definitions and Efficient Constructions,’’ in

Proc. ACM CCS, 2006, pp. 79-88.

[3] R. Ostrovsky and W. Skeith, ‘‘Private Searching

on Streaming Data,’’ in Proc. CRYPTO, 2005, pp.

233-240.

[4] R. Ostrovsky and W. Skeith, ‘‘Private Searching

on Streaming Data,’’ J. Cryptol., vol. 20, no. 4, pp.

397-430, Oct. 2007.

[5] J. Bethencourt, D. Song, and B. Waters, ‘‘New

Constructions and Practical Applications for Private

Stream Searching,’’ in Proc. IEEE SP, 2006, pp. 1-6.

[6] J. Bethencourt, D. Song, and B. Waters, ‘‘New

Techniques for Private Stream Searching,’’ ACM

Trans. Inf. Syst. Security, vol. 12, no. 3, p. 16, Jan.

2009.

[7] Q. Liu, C. Tan, J. Wu, and G. Wang, ‘‘Cooperative

Private Searching in Clouds,’’ J. Parallel Distrib.

Comput., vol. 72, no. 8, pp. 1019-1031, Aug. 2012.

[8] G. Danezis and C. Diaz, ‘‘Improving the Decoding

Efficiency of Private Search,’’ Int’l Assoc. Cryptol.

Res., IACR Eprint Archive No. 024, Schloss

Dagstuhl, Germany, 2006.

[9] G. Danezis and C. Diaz, ‘‘Space-Efficient Private

Search with Applications to Rateless Codes,’’ in Proc.

Financial Cryptogr. Data Security, 2007, pp. 148-162.

[10] M. Finiasz and K. Ramchandran, ‘‘Private

Stream Search at the Same Communication Cost as a

Regular Search: Role of LDPC Codes,’’ in Proc. IEEE

ISIT, 2012, pp. 2556-2560.

[11] X. Yi and E. Bertino, ‘‘Private Searching for

Single and Conjunctive Keywords on Streaming

IJDCST @June-July-2015, Issue- V-3, I-5, SW-19
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

59 www.ijdcst.com

Data,’’ in Proc. ACM Workshop Privacy Electron.

Soc., 2011, pp. 153-158.

[12] B. Hore, E.-C. Chang, M.H. Diallo, and S.

Mehrotra, ‘Indexing Encrypted Documents for

Supporting Efficient Keyword Search,’’ in Proc.

Secure Data Manage., 2012, pp. 93-110.

[13] P. Paillier, ‘‘Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes,’’ in Proc.

EUROCRYPT, 1999, pp. 223-238.

